首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   154篇
  国内免费   4篇
  2023年   4篇
  2022年   8篇
  2021年   24篇
  2020年   20篇
  2019年   36篇
  2018年   51篇
  2017年   23篇
  2016年   25篇
  2015年   54篇
  2014年   50篇
  2013年   43篇
  2012年   58篇
  2011年   64篇
  2010年   51篇
  2009年   29篇
  2008年   32篇
  2007年   25篇
  2006年   25篇
  2005年   33篇
  2004年   27篇
  2003年   30篇
  2002年   18篇
  2001年   10篇
  2000年   16篇
  1999年   9篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   8篇
  1977年   4篇
  1976年   3篇
  1975年   8篇
  1974年   10篇
  1973年   5篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
41.
42.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   
43.
We investigated the in vivo relevance of the impact of sarA and saeRS on protease production using derivatives of the USA300 strain LAC. The results confirmed that mutation of saeRS or sarA reduces virulence in a bacteremia model to a comparable degree. However, while eliminating protease production restored virulence in the sarA mutant, it had little impact in the saeRS mutant. Additionally, constitutive activation of saeRS (saeRSC) enhanced the virulence of LAC and largely restored virulence in the isogenic sarA mutant. Based on these results, together with our analysis of the representative virulence factors alpha toxin, protein A (Spa), and extracellular nucleases, we propose a model in which the attenuation of saeRS mutants is defined primarily by decreased production of such factors, while constitutive activation of saeRS increases virulence, and reverses the attenuation of sarA mutants, because it results in both increased production and decreased protease‐mediated degradation of these same factors. This regulatory balance was also apparent in a murine model of catheter‐associated infection, with the results suggesting that the impact of saeRS on nuclease production plays an important role during the early stages of these infections that is partially offset by increased protease production in sarA mutants.  相似文献   
44.
The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2.  相似文献   
45.
An alternative antimalarial pathway of an ‘outdated'' drug, chloroquine (CQ), may facilitate its return to the shrinking list of effective antimalarials. Conventionally, CQ is believed to interfere with hemozoin formation at nanomolar concentrations, but resistant parasites are able to efflux this drug from the digestive vacuole (DV). However, we show that the DV membrane of both resistant and sensitive laboratory and field parasites is compromised after exposure to micromolar concentrations of CQ, leading to an extrusion of DV proteases. Furthermore, only a short period of exposure is required to compromise the viability of late-stage parasites. To study the feasibility of this strategy, mice malaria models were used to demonstrate that high doses of CQ also triggered DV permeabilization in vivo and reduced reinvasion efficiency. We suggest that a time-release oral formulation of CQ may sustain elevated blood CQ levels sufficiently to clear even CQ-resistant parasites.Along with improvements in vector control, surveillance/diagnosis and treatment accessibility, the development of new drugs to counteract the problem of drug resistance remains integral to the eradication agenda.1 Efforts to develop novel antimalarials have been promising,2, 3 and drugs designed specifically to reverse drug resistance are also being uncovered.4 However, novel chemical entities are expensive to test and take considerable time before they can be deployed. In comparison, alternative strategies to fully exploit the existing arsenal of antimalarials (largely already affordable and accessible) are likely to be relatively expedient and cost-effective.We had previously demonstrated the existence of a novel parasite programmed cell death (PCD) mechanism that was induced by high concentrations of chloroquine (CQ) and shown that clan CA cysteine proteases were key mediators of the pathway.5 We had also observed that the permeabilization of the parasite digestive vacuole (DV) was an important upstream trigger of this pathway and that other lysosomotropic compounds that are not parasite-specific could similarly destabilize the DV to initiate parasite PCD.6 We hypothesize that by altering the dosing regimen or formulation of CQ, it might be possible to reinstate CQ into antimalarial chemotherapy by making use of this novel mechanism.7In this present study, we begin by showing evidence that CQ treatment is able to result in the extrusion of DV proteases into the parasite cytoplasm. Second, we validate the existence of this PCD pathway in multiple laboratory strains and field isolates to suggest its clinical relevance and universality. Third, we investigate the minimum concentration and duration required for CQ to trigger PCD to determine if the pharmacokinetics of the current CQ regimen might be suitable for initiating PCD. Finally, we make use of two murine malaria models to demonstrate that a short exposure to high levels of CQ is able to induce parasite DV permeabilization in vivo and that this procedure reduces parasite viability.  相似文献   
46.
Solution‐based earth‐abundant Cu2ZnSn(Se,S)4 (CZTSSe) is proven to be a promising tool for thin‐film photovoltaic fabrication. Combining fully dissolved copper (Cu) and zinc/tin (Zn/Sn) hydrazinium constituents in an ethanolamine (EA) and dimethylsulfoxide (DMSO) solution mixture forms the CZTS precursor. All solutes in the precursor solution are intermixed on the molecular scale with excellent homogeneity. Sequential annealing steps under chalcogen vapor allow for enhanced grain growth while preventing the back contact from forming an excessively thick Mo(S,Se)2 layer. The resulting devices achieve power conversion efficiencies of 7.5% under 1 sun conditions.  相似文献   
47.
48.
49.
Black soldier fly (BSF) larvae, Hermetia illucens L. (Diptera: Stratiomyidae), bio-convert organic side streams into high-quality biomass, the composition of which largely depends on the side stream used. In the present study, BSF larvae were reared on feed substrates composed of dried brewers’ spent grains, each supplemented with either water, waste brewer’s yeast, or a mixture of waste brewer’s yeast and cane molasses to obtain 12 different substrates: barley/water, barley/yeast, barley/yeast/molasses, malted barley/water, malted barley/yeast, malted barley/yeast/molasses, malted corn/water, malted corn/yeast, malted corn/yeast/molasses, sorghum-barley/water, sorghum-barley/yeast, and sorghum-barley/yeast/molasses. The crude protein, fat, ash, and mineral contents of the BSF larvae fed each feed substrate were quantified by chemical analyses. The effect of substrate, supplementation, and their interaction on crude protein, fat, and ash contents of BSF larval body composition was significant. Calcium, phosphorus, and potassium were the most abundant macrominerals in the larvae and their concentrations differed significantly among substrates. These findings provide important information to support the use of BSF larval meal as potential new source of nutrient-rich and sustainable animal feed ingredients to substitute expensive and scarce protein sources such as fishmeal and soya bean meal.  相似文献   
50.
Sibling neurons in the embryonic central nervous system (CNS) of Drosophila can adopt distinct states as judged by gene expression and axon projection. In the NB4-2 lineage, two even-skipped (eve)-expressing sibling neuronal cells, RP2 and RP2sib, are formed in each hemineuromere. Throughout embryogenesis, only RP2, but not RP2sib, maintains eve expression. In this report, we describe a P-element induced mutation that alters the expression pattern of EVE in RP2 motoneurons in the Drosophila embryonic CNS. The mutation was mapped to a Drosophila homolog of human AF10/AF17 leukemia fusion genes (alf), and therefore named Dalf. Like its human counterparts, Dalf encodes a zinc finger/leucine zipper nuclear protein that is widely expressed in embryonic and larval tissues including neurons and glia. In Dalf mutant embryos, the RP2 motoneuron no longer maintains EVE expression. The effect of the Dalf mutation on EVE expression is RP2-specific and does not affect other characteristics of the RP2 motoneuron. In addition to the embryonic phenotype, Dalf mutant larvae are retarded in their growth and this defect can be rescued by the ectopic expression of a Dalf transgene under the control of a neuronal GAL4 driver. This indicates a requirement for Dalf function in the nervous system for maintaining gene expression and the facilitation of normal growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号